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Abstract

Alzheimer’s disease(AD) is being the burden of society and family. Applying computing-aided 

strategies to reveal its pathology is one of the research highlights. Plasma neurofilament light 

(NFL) is an emerging noninvasive and economic biomarker for AD molecular pathology. It 

is valuable to reveal the correlations between the plasma NFL levels and neurodegeneration, 

especially hippcampal deformations at the preclinical stage. The negative correlation between 

plasma NFL levels and hippocampal volumes has been documented. However, the relationship 
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between the plasma NFL levels and the hippocampal morphometry details at the preclinical 

stage is still elusive. This study seeks to demonstrate the capacity of our proposed surface-based 

hippocampal morphometry system to discern the plasma NFL positive (NFL+>41.9 pg/L) level 

and plasma NFL negative (NFL−<41.9pg/L) level and illustrate its superiority to the hippocampal 

volume measurement by drawing the cohort of 154 CU middle aged and elderly adults. We also 

apply this morphometry measure and a proposed sparse coding based classification algorithm to 

classify CU individuals with NFL+ and NFL− levels. Experimental results show that the proposed 

hippocampal morphometry system offers stronger statistical power to discriminate CU subjects 

with NFL+ and NFL− levels, comparing with the hippocampal volume measure. Furthermore, this 

system can discriminate plasma NFL levels in CU individuals (Accuracy=0.86). Both the group 

level and individual level analysis results indicate that the association between plasma NFL levels 

and the hippocampal shapes can be mapped at the preclinical stage.

Index Terms—

Alzheimer’s disease; Preclinical stage; Plasma NFL; Magnetic resonance imaging (MRI); 
Hippocampal morphometry; Pattern analysis

I. Introduction

AGING society is coming, neurodegenerative diseases, especially Alzheimer’s disease 

(AD), are being the burden of society and family [1]. Identifying AD biomarkers at the pre-

symptomatic stage will help improving the therapeutic effect [2], [3]. Variety of amyloid, 

blood and neurodegeneration based biomarkers are studied for revealing the neuropathology 

mechanisms, especially for dementia risk predictions [4], [5], [6], [7]. Molecular pathologies 

such as cerebral β-amyloid plaques and tau tangles occur decades before Alzheimer’s 

disease (AD) symptom onset [8]. However, current available techniques to detect molecular 

pathology are either intrusive (lumbar puncture) or highly costly (amyloid positron emission 

tomography (PET)), which limit the application in clinical [9].

Blood-based biomarkers (BBBs), as the emerging AD molecular pathology measurements, 

are reliable, sensitive, economic, and less invasive [10], [11], [12]. Low-cost BBBs, 

such as plasma amyloid beta, plasma neurofilament light protein (NFL), and plasma tau, 

have close relationships with neurodegeneration biomarkers measured by the expensive 

neuroimaging equipments [13]. And they offer a promising chance to reduce the quantity of 

people requiring more expensive examinations, to perform extensive screening for clinical 

diagnosis, and allow for longitudinally tracking pathological process in clinical trials [13].

Among these BBBs, Plasma NFL has recently been proposed as an early-diagnosis BBB 

in AD continuum and a potential biomarker related to neuronal injury [14]. To verify the 

distinguishable effects of the plasma NFL at the pre-clinical stages, it is necessary to reveal 

its association with AD-related neuropathological biomarkers, such as, cortical thickness 

reduction, hippocampal atrophy, ventricular enlargement [15], [16], [17]. Zhou et al. [18] 

show significantly increased plasma NFL levels in dementia groups compared to cognitively 

unimpaired (CU) group. Studies [19], [20] show that plasma NFL is related to cognitive 

impairment in AD as well as imaging markers of this disease. According to the study by 
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Nyberg et al. [21], clinical AD is characterized by higher blood NFL, which presumably 

reflects brain white matter changes. Specially, the hippocampus plays a key role in the AD 

progression analysis [22]. Mattson et al. [19] show that plasma NFL levels have negative 

association with the hippocampal volume in the AD patients. The study of [23] shows 

that the plasma NFL is the most sensitive plasma biomarkers for hippocampal subfield 

alterations in the MCI stage.

However the correlation between plasma NFL levels and the hippocampus at the preclinical 

stage is still elusive. The study of [18] indicates that plasma NFL levels may not be very 

applicable as a AD diagnosis biomarker at the preclinical stage. Another study by [24] finds 

elevated plasma NFL levels at the preclinical stage of familial AD but scarce for sporadic 

AD. Nyberg et al. [25] suggest that the plasma NFL levels have no significant associations 

with cognition but are associated with white matter alterations at the preclinical phase.

Structural magnetic resonance imaging (MRI) biomarkers have been widely appiled in the 

research of AD related brain structures and clinical diagnosis because of the noninvasive 

and cost-effective properties. MRI based surface multivariate morphometry statistics (MMS) 

proposed by [26], [27] demonstrate superior performances of encoding Apolipoprotein E4 

(APOE4) dose effects on brain structures of nondemented and CU groups [22], [28], [29]. 

The principle of the MMS is to encode morphometry along the surface tangent direction 

by the multivariate tensor-based morphometry (mTBM) and encode morphometry along the 

surface normal direction based on the radial distance (RD). Compared with other structural 

analysis methods such as using the Jacobian determinant, the maximum and minimum 

eigenvalues of surface metric, and the pair of eigenvalues of the Jacobian matrix [26], 

[27], the MMS approach performs optimally in detecting clinically-relevant brain structure 

differences. In addition, it is also extended to other neuropathology studies [30], [31].

The aim of the study is to characterize the capacity of hippocampal MMS to distinguish 

CU subjects with two plasma NFL levels at the group and individual levels. We hypothesize 

that our unique automatic hippocampal surface morphometry system [28], [22] may help 

reveal the association of plasma NFL levels and hippocampal morphometry. We conduct 

experiments on structural MRI data of 154 cognitively unimpaired subjects from publicly 

available Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Group comparison 

analysis [28], [26], [22] and classification methods [32] are applied to reveal the association 

between plasma NFL and surface-based hippocampal morphometry in the preclinical stage.

The following are the key contributions of this work.

1. Hippocampal MMS has been proven to be an effective AD biomarker, this work 

develops MMS-based system to verify plasma NFL levels in the CU subjects, 

which is useful to verify other emerging biomarkers based on well-studied 

metrics.

2. The association between hippocampal morphometry and plasma NFL levels is 

revealed, which is helpful to comprehensively understand the AD pathology 

progress in the preclinical stage.
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The remaining part of this work is outlined as follows. Section II introduces the proposed 

methodology and the experimental results are presented in section III detailedly. Section IV 

is the discussion of the study. And finally, conclusions are presented in Section V.

II. Materials and Methodology

A. Sample Data

The data used in the study is obtained from the ADNI database (https://adni.loni.usc.edu/), 

which recruited participants from more than 50 locations in the United States and Canada 

and includes multi-modal neuroimages such as MRI, PET, clinical evaluation biomarker 

such as MMSE and APOE. ADNI aims to explore the use of clinical and imaging markers in 

the early diagnosis of AD, to predict progression risk, and to develop novel therapies. From 

ADNI, we found 154 CU participants who have MRI and plasma NFL recordings. Plasma 

NFL measures are introduced in [19]. Plasma NFL+ (>41.9pg/L) CU subjects have higher 

risk to progress to AD stage relative to Plasma NFL− (>41.9pg/L) CU subjects [18], [19].

A one-way analysis of variance was used to compare the ages and education years between 

plasma NFL+ and NFL-groups, while a chi-squared test was used to analyze the data 

relevant to the gender [22]. Table I summarizes the statistical findings, revealing that the sex 

and education years of the two groups are matched. While age differences of the two groups 

are significant (p<0.01).

B. Processing Pipeline

To study the relationship between plasma NFL levels and hippocampal morphometry, this 

work firstly makes group analysis using our proposed hippocampal surface morphometry 

system [28], [29], [22], which works effectively for evaluating the APOE-e4 dose effects 

on the hippocampal deformation of non-demented subjects. Then, the MMS patches in 

individuals with different plasma NFL levels are refined and classified using the Patch 

Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) 

and classification system [32].

1) Group Comparison Analysis: As shown in (1)~(4) of Fig. 1, T1 MRI images 

are linearly registered into MNI152 standard space with the FSL software package to 

eliminate the influence of brain size [33]. Then hippocampal structures are segmented with 

FIRST in the FSL [34], [35], and on this basis, surface meshes are constructed with the 

topology-preserving level set [36] and marching cubes algorithm [37]. The holomorphic 

flow segmentation approach [26] is used to parameterize each hippocampal surface with 

refined triangular meshes and the surface fluid registration method is used to register 

the parameterized surfaces to a common rectangular grid template. After that, there are 

equal amount of vertices (150*100) illustrating in Fig. 1 (3) on each hippocampal surface. 

The surface vertices are presented as the intersections of the red and blue curves. To 

evaluate the shape differences, the hippocampal morphomety are described by vertex-wise 

MMS encoding morphometry along the surface tagent direction and normal direction 

[26], [27]. Using Hotelling’s T2 test with a permutation test [26], [27], [28], [29], [22], 

group differences of hippocampal morphometry between plasma NFL levels are analyzed. 
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The toolkit for the surface MMS estimation and group analysis is available at https://

www.nitrc.org/projects/mtsms_2020/.

2) Individual Classification: Hippocampal MMS performs well to describe the 

association between hippocampal morphometry and plasma NFL levels at the group 

level [29], [22]. However it can not be directly used for individual plasma NFL levels 

classifications. The dimension of the surface MMS feature is substantially larger than 

the sample size, which is likely to cause high dimension-small problem for individual 

classification. To validate the association between morphometry and plasma NFL levels 

at the individual level, PASCS-MP [32] is used to refine the hippocampal shape features, 

following random forests classifier, as shown in (5)~(6) of Fig. 1. Based on the PASCS 

algorithm, some patches on the hippocampal surface were randomly selected and a sparse 

code was generated for each patch. On these sparse codes, a new vector was generated to 

represent the surface features of each subject applying the max-pooling (MP) operation. 

Finally, the random forest classifiers are trained to binary classify the sparse codes in 

individuals with different plasma NFL levels and the 10-fold cross-validation was applied to 

validate the performance of the classifiers.

min
D, Zi

1
2Σi = 1

n exp − ∥ Dzi − xi ∥2
2

σ2 + λΣi = 1
n ∥ zi ∥1 (1)

The regularization parameter for the l1-norm (λ), the kernel size (σ) in the exponential 

function (see Eq. 1), the patch size and the dimension of the learned sparse codes are 

the key hyperparameters for sparse coding optimization and have a significant impact on 

the PASCS-MP performance [32]. The sparsity of the sparse codes are determined by the 

parameter λ, which can affect the selection of significant features and reduction of the noise. 

The correntropy properties are determined by the parameter σ [32], [38]. The correntropy 

has direct relationship to the probability of similarity between two random variables in the 

kernel bandwidth-controlled joint space neighborhood. That is, the kernel bandwidth serves 

as a zoom lens and controls the observation window which evaluates similarity and provides 

an effective mechanism to eliminate the destructive influence of abnormal values [39]. 

Since MMS of hippocampal vertices with strong discriminate power are always clustered, 

patch-selection strategy is suitable for refining these critical regional features. For extracting 

significant features on each surface and reducing the dimensionality before sparse coding, 

the square windows are randomly generated producing a set of image patches with various 

amounts of overlapping. As in the previous studies of AD [40], [41], [42], kinds of patch 

size settings are tested. The dimension of the learned sparse coding represents individual 

hippocampal shape features, if it is too low, some significant morphometry information 

might miss, if it is too large, there will be a lot of redundant information. With the 

algorithm in Table. II, the learned sparse codes under kinds of hyperparameter candidates 

are calculated.

These optimal hyperparameters are to be tested by comparing different settings of 

classification performances which are measured by accuracy (ACC), negative predictive 

value (NPV), positive predictive value (PPV), sensitivity (SEN), specificity (SPE) and 
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balance accuracy (BAC). The dataset is shuffled and splitted into ten groups for the 10-fold 

cross-validation. One group is taken as the test set and the remaining groups are for training. 

The key parameters with the best performance measures are selected. For further details of 

the parameter optimizations, please refer to [32].

III. Results

A. Hippocampal Volume Analysis

Since hippocampal volume is a widely-used AD biomarker, it negatively correlates with 

plasma NFL levels in AD symptom groups [19], [43]. Firstly, we computed the hippocampal 

volumetric measures on the CU cohort. Similar to previous AD diagnosis studies using 

hippocampal volume [44], [45], the volumes were linearly registered to the MNI standard 

space and then calculated on the processed hippocampal structures [35]. To adjust for 

post-conception age effects on hippocamby volumes, we applied general linear model on 

the hippocampal volumes [46]. Then the group differences of the adjusted hippocampal 

volumes of two plasma NFL groups were estimated using t-test. Table III shows the adjusted 

hippocampal volume group analysis results. No significant group differences are observed 

between hippocampal volumes of two Plasma NFL levels at the preclinical stages.

B. Hippocampal Morphometric analysis

This work analyzed the hippocampal morphometry differences using cross-sectional 

analysis and expected to observe significant differences between 58 plasma NFL+ and 

96 NFL-subjects. The point-wise MMS adjusted for age effects were estimated using 

the general linear model proposed by [46]. The p-maps of group differences on the 

bilateral hippocampus are showed in the Fig. 2. Vertices in non-blue colors have statistical 

differences at the nominal 0.05 level, uncorrected for multiple comparisons. We found 

overall significant morphometric differences on the left hippocampus (p = .01, corrected) 

and the right hippocampus (p = .03, corrected). These ROIs are mainly at the CA1, CA3 and 

SUB subfields which are consistent with the findings in the MCI and AD stages [19], [23].

C. Plasma NFL Levels Classification

To further reveal the association between plasma NFL levels and hippocampal MMS at 

the individual level, the sparse coding and classification framework of our previous study 

[32] are applied to extract the low dimensional representations of MMS measures and 

predict plasma NFL levels for each person. With 10-cross validation for classification 

performances, key hyper-parameters, λ, σ, patch size and sparse code dimension of the 

framework are optimized separately, Figure 3 shows the ROC curves of the λ, patch size 

and sparse code dimension candidates for the plasma NFL levels classification. Then we get 

the optimal hyper-parameters as λ = 0.13 and the sparse code dimension is 2000. Similarly, 

we get the optimal σ = 0.48. Table IV shows under the patch size=20*20, the optimal 

performances ACC=85.5%, NPV=88.13%, PPV=81.73%, SPE=85.77%, SEN=85.51%, and 

BAC=85.64%.
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IV. Discussion

Our previous studies [26], [28], [22] show that hippocampal MMS is a robust biomarker for 

AD pathology study, especially its distinguishable performance at the preclinical stage. It is 

an accessible way to validate these emerging plasma biomarkers using the hippocampal 

MMS measure. In this study, we propose a hippocampal surface-based plasma NFL 

level assessment system which includes hippocampal MMS calculation, group comparison 

analysis, and individual classification models. This system is applied on 154 CU subjects 

with two plasma NFL levels. There are two main findings. Firstly, group comparison 

analysis results show that the hippocampal surface-based MMS effectively encodes a 

substantial quantity of adjacent intrinsic geometry information related to plasma NFL status 

at the preclinical stage which otherwise is inaccessible with classical hippocampal volume. 

Secondly, our proposed sparse coding method, PASCS-MP, can be generalized to the 

association study of plasma NFL and hippocampal morphometry, high dimensional MMS 

features are coded as low-dimensional sparse features. And the outstanding classification 

performances on these sparse features further indicate that there is a close relationship 

between hippocampal MMS measure and plasma NFL levels at the individual level.

BBBs are economic and convenient, more and more studies [12], [47], [48], [49] expect to 

find plasma biomarkers for AD risk evaluation. Among them, plasma NFL levels of AD 

patients are significant higher than CU subjects [50]. Studies have shown that plasma NFL 

levels rise over time in mild cognitive impairment and AD patients, and have association 

with AD-related brain deformations, especially hippocampal volume loss [19], [43], [51]. 

However the association of plasma NFL levels and AD pathology are still elusive at the 

preclinical stage. The study of [18] indicates that plasma NFL levels may not be applicable 

as a AD diagnosis biomarker at the preclinical stage. Another study finds elevated plasma 

NFL levels at the preclinical stage of familial AD but scarce for sporadic AD [24]. Our 

previous studies show that hippocampal MMS [26], [28], [29], [22], [30] has an outstanding 

performance for tracking neuropathology continuum from the preclinical stage to dementia, 

it is accessible to verify the significant hippocampal subregions related to plasma NFL 

effects at the preclinical stage using the MMS measurement.

This work proposed one pipeline to verify the association between the plasma NFL levels 

and the neurodegeneration effects at the preclinical stage. The group comparison analysis 

and the individual classification results indicate that the plasma NFL levels implies a close 

relationship with hippocampal MMS at the preclinical stage. The significant hippocampal 

subfields are mainly at the CA1, CA3 and SUB [52], which are consistent with the findings 

in the AD continuum progress. While these preclinical hippocampal alterations associated 

with plasma NFL levels cannot be identified with the hippocampal volume analysis. So this 

proposed pipeline is useful to verify other emerging biomarkers, especially at the preclinical 

stage.

Despite the promising results of the association between hippocampus MMS and plasma 

NFL levels are obtained by applying the group and individual analysis strategies at the 

preclinical stage, there are three critical caveats to note. Firstly, the sample sizes utilized 

in the study to estimate the hippocampal morphomertry differences between plasma NFL 
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levels are limited. In the future work, we will use other public sMRI cohorts to validate our 

proposed algorithm, such as UK Bioband [53] and Adolescent Brain Cognitive Development 

(ABCD) study [54]. In addition, we will employ the MMS approach to reveal the association 

between plasma NFL levels with other well-known AD related nucleus, such as caudate, 

amygdala, putamen, and thalamus [55], [56]. Secondly, the cross-sectional MMS analysis 

identifies the abnormal subregions of the plasma NFL positive at the preclinical stage. 

In future work, we will explore the longitudinal brain subregions related to plasmal NFL 

progressing, and apply COX model [57] to estimate the AD conversion risk dynamically 

based on the plasma NFL values. Thirdly, minimally invasive and cost-effective BBBs have 

the potential to become the preclincal diagnosis tools for AD continuum. Carmen et al. [58] 

suggest that plasma GFAP and p-tau can identify AD risk individuals at the preclinical stage. 

In future work, we will verify the associations between more BBBs and neuropathological 

biomarkers.

V. Conclusion

This work proposes a novel surface-based morphometry analysis framework to reveal 

the association between plasma NFL levels and hippocampal subfields on a CU cohort. 

Results show that the hippocampal MMS encodes a great deal of information that may 

be inaccessible or overlooked by hippocampal volume measures. This work has found 

significant hippocampal morphometry differences in the CU individuals with plasma NFL+/

−. This proposed framework can be applied to verify the associations between other 

emerging periphery physiological biomarkers and neurodegeneration criterion. The results 

additionally indicate a potential utility for the integration of plasma NFL and MMS 

as a noninvasive method to study the association between AD induced molecular and 

brain structural changes at the preclinical stage. In future, we will study the correlations 

between longitudinal plasma NFL and hippocampal MMS features in CU subjects. We 

also plan to extend this association analysis method to more AD-related emerging blood-

based biomarkers [13] and brain regions of interest [44], [5], and further integrate these 

noninvasive measures of BBBs and MMS for tracking AD pathology progress at the 

preclinical AD stages. It will contribute new insights to a better understanding of the BBB 

effectiveness as the potential preclinical biomarkers.
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Fig. 1. 
Hippocampal morphometry analysis system: (1) Individual MRIs were linearly registered 

to the brain template; (2) Hippocampal structures were segmented; (3) Hippocampal 

surfaces were parameterized and then fluid-registered to a standard template to extract 

the morphometric features; (4) The group differences of hippocampal morphometry were 

statistically analyzed between two plasma NFL levels. {S1, S2, S3, S4}is the multivariate 

morphometry statistics vector on each surface point; (5) The PASCS algorithm is used on 

individual hippocampal morphometry features for feature selection and sparse coding; (6) 

Applying the max-pooling (MP) operation on the learned sparse codes, a new vector was 

generated to represent each subject(P1,P2,…,Pn) and random forest classifiers are used to 

identify individuals with different NFL levels. NFL: neurofilament light.
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Fig. 2. 
Group hippocampal shape differences adjusted for age effects between plasma NFL+(N=58) 

and NFL−(N=96) in the CU cohort, at the nominal 0.05 level, uncorrected. The overall 

significance of LH and RH with permutation test were p=0.01 and p=0.03, respectively. LH: 

left hippocampus; RH: right hippocampus; NFL: neurofilament light.
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Fig. 3. 
ROC curves for classification based on kinds of hyperparameter settings. The left subfigure 

displays the ROC curves under different λ settings, the midle subfigure displays the ROC 

curves under different patch size for refining hippocampal morphometry features, the right 

subfigure displays the ROC curves under different sparse code dimension settings.
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TABLE I

Demographic characteristic statistics between plasma NFL levels on cognitively unimpaired cohort.

Plasma NFL+ (n=58) Plasma NFL- (n=96) Inferential statistics

Sex (M/F) 24/34 51/45 0.21

Age 80.10±5.77 73.56±5.45 <0.01

Education 15.97±2.87 16.69±2.5 0.1
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TABLE II

Algorithm for solving PASCS-MP.

Algorithm 1 PASCS-MP

Require: Hippocampal shape features X = (x1,x2,… ,xn) ∈ Rp × n,

patch size xi, regularization parameter λ, kernel size σ

Ensure: Dictionary D and sparse code Z

Initialize: D1,1, xi, λi, σi, i = 1,…, n

1: for t = 1 to τ do

2: for i = 1 to n do

3: Get an image patch xi from X, and obtain useful surface features via Eg.(1)

4: Update the sparse code by calculating the partial derivative of zi
t

∂
∂zl

c Di, t, zi
t = ∂

∂zl

1
2ℎi ∥ Di, tzi

t − xi ∥2
2

Where c() is coordinate descent:

5: Update the Hessian matrix and the learning rate:

M M + zi
t zi

t T , γi, l = 1/mll .
6: Update D through via stochastic gradient descent (SGD)

∂
∂zl

f Di, t, zi
t = ∂

∂zl
c Di, t, zi

t + ∂
∂zl

λ ∥ zi
t ∥1

7: Update auxiliary variable hi:

8: If i = n, Then D1,t+1 = Dn,t.

9: end for

10:  end for

Output: D = Dn,τ and zj = ZJ
τ
 for i = 11,…, n
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TABLE III

Bilateral hippocampal volumes of two plasma NFL levels on cognitively unimpaired cohort. NFL: 

neurofilament light.

Plasma NFL+ (n=58) Plasma NFL- (n=96) Inferential statistics

Left HP 3341.08±409.7 3652.59±502.52 0.10

Right HP 3652.59±502.52 3788.08±528.28 0.12
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TABLE IV

Patch size testing with the optimal λ, σ and sparse code dimension

Patch Size ACC NPV PPV SPE SEN BAC

10*10 67.00 65.28 78.42 80.68 56.05 68.37

15*15 78.50 79.05 80.94 83.79 73.21 78.50

25*25 80.00 87.46 75.93 75.01 85.26 80.13

20*20 85.50 88.13 81.73 85.77 85.51 85.64
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